Sunday, February 20, 2011

Laron Syndrome = No Cancer or Diabetes!

Dr. Guevara, Ecuador Institute of Endocrinology.
There may not be many positive aspects to having any type of dwarfism, but for the people of Ecuador who have Laron Syndrome, this is not the case. Researchers have found a centralized group of Ecuadorians with this rare disorder which causes them to stand only about three feet six inches and have a seemingly mysterious immunity to cancer and diabetes. 

Of the roughly 300 people with this disease, 100 of them reside in Ecuador which makes it a hot-spot for research for Dr. Jaime Guevara-Aguirre. Thus far, we know that Laron Syndrome is a genetic disorder stemming from a mutation in the gene that codes for growth hormone receptor. When human growth hormone pairs with the growth hormone receptor, insulin-like growth factor (IGF1 ) is produced which ultimately causes cells to proliferate. When researchers decided to study the 100 Ecuadorians with the disorder, they compared their health with the health of 1,600 of their relatives who did not have the disorder. After studying these two groups for 22 years, not a single case of diabetes or lethal cancer was found in the Ecuadorian dwarves! The group of relatives, on the other hand, suffered from both ailments in great numbers. 

The possible reason for why those with Laron Syndrome did not acquire diabetes or cancer lies in the fact that they are not producing adequate amounts (or none at all) of insulin-like growth factor 1. This results in lower insulin concentrations and, subsequently, hypersensitivity to insulin. So, while normal individuals’ cells suffer DNA damage under stress, the cells in those who have Laron Syndrome simply self-destruct. Cells self-destructing may not sound like a positive thing, but when you think about the possible side-effects of having damaged cellular DNA floating around in your body and possibly causing cancer, cell death doesn’t sound too shabby!

Tuesday, February 15, 2011

Not so transient


You know how when you get a new car (maybe not new, but new to you) and all of a sudden it seems like almost everyone on earth has that same car? You see one beside you in the Walmart parking lot, one stopped at the red light…you get the point. Science is exactly the same. Until some scientific topic stares you right in the face, you don’t take all that much notice. This was the same with me and the topic of strokes until this summer when my dad had one. Now every science news website I look at, I can’t help but read the ones with a headline relating to strokes. He first had a TIA (transient ischemic attack) which is also known as a mini-stroke. He was having slight trouble talking and seemed confused but everything was fine. Within a few days he had a stroke which caused one side of his face to droop and he lost his speech. He also couldn’t remember how to do simple tasks such as making the coffee he had always been making because he didn’t even know where to place the water. All of these crazy things made me wonder what the heck was going on inside of his body due to one tiny blood vessel is his brain being blocked.

New research indicates that the TIA my dad initially had isn’t necessarily transient like the name implies. It can actually have long lasting effects and hidden brain damage. The patients studied in this research all had resolved the effects the mini-stroke had on their motor systems within 24 hours and when clinically evaluated 14-30 days later they showed no impairment. Interestingly though, when the patients were subjected to a brain mapping procedure it unveiled that the brain actually had damage that lasted much longer than was once thought. The brain cells on the affected side of the brain showed changes in excitability making it harder for neurons to respond.

Since these TIA’s are often warning signs and the chance of a stroke in the days following a TIA is greatly increased, this mapping technique may be of great help. Doctors say that by refining this technique they may be able to identify which patients are at greatest risk for a stroke following a TIA and therefore direct treatment that is more suiting for each individual case. My dad unfortunately was one of the patients who did end up having a stroke following his TIA, but it has been over half a year since his stroke and he is making great progress. His cognition is almost back to normal and he can speak full sentences now. The recovering that is going on within his brain now is an even more remarkable thing with both hemispheres of his brain working to compensate. Information about this can be seen in the article The changing roles of 2 hemispheres in stroke recovery.

SNL, Birth control, and drinking Estrogen oh my!



Saturday night live made a skit that makes fun of the commercials for Seasonale, which is a birth control pill that reduces the number of periods to just four a year. Rather than the 12 a year (for those of us who are not mathematically inclined). I'm sure everyone has seen at least one commercial for Seasonale.



I am hopefully going to be a toxicologist one day very soon. Being a toxicologist in training we talk about toxins (shocker there) that are in everyday life. Estrogen (an endocrine disruptor) in the water has been a pretty popular topic because birth control is used so regularly and it is excreted from our system; which in turn ends up in the water supply. It is popular belief that these pills are the cause of the high levels of estrogen in our drinking water. The scientists now are saying that the estrogen is actually coming from what is called 'natural estrogen'. This type of estrogen is found in soy and dairy products as well as animal manure. The story goes into a little more detail about it, but that is the main selling point.



In other words, keep taking your birth control, you are not polluting the water.


Monday, February 14, 2011

Kiss and Tell

You can never forget your first kiss: the range of emotion surging through the body as your lips meet for the first time. As humans we are compelled to kiss, but what causes humans to want to exchange saliva and bacteria with another person? The answer to this is evolution and chemicals of course. In Sheril Kirshenbaum new book the “The Science of Kissing: What Our Lips Are Telling Us," it explains the origin and continuation of kissing. The scientific word for kissing is osculation and the definition of a kiss is the “mouth to mouth orientation of two individuals or the pressing of one’s lips on some other part of another’s body.” So now that we know what a kiss is, there are many questions that must be asked.

When did kissing begin and Why? Kissing has perplexed scientist for years. Even Darwin pondered the origin of the kiss. The explanation he asserted was kissing was innate or perhaps hereditary. This theory has been combated by anthropologists who would believe the kiss is a learned behavior. This kissing debate seems to stem from the many different reasons people kiss. Therefore looking at the evolution of the kiss is complex. It can be assumed that since the origin of the kiss cannot be pinpointed, the reasons for the behavior cannot be ascertained. This means that kissing was not likely developed from one single behavior. The scientific obscurity continues because kissing has no clear classification system that characterizes the different types of kisses or related behaviors. One theory of why kissing evolved was suggested by V.S. Ramachandran of UC San Diego, it says we are drawn to the color red. This was because our primate ancestors needed to detect ripe fruit. This recognition of red would allow them to survive and produce viable offspring. Therefore this attraction to the color propagates and attracts mates based on the color of the lips. It was found in a study that when male volunteers were shown photos of women wearing various lipstick shades. The men consistently chose red as the most attractive.

So after attractive and the lips meet, what exactly happens in the body? First a chemical cascade occurs, the pupils dilate, the heart rate increases and breathing becomes irregular. Dopamine is release, which excites the reward centers in the brain. A good kiss often leads to the rise in a chemical called oxytocin that leads to strong feelings of attachment. Kissing also allows for us to unconsciously assess the compatibility of our mate. Genes called the major histocompatibility complex (MHC) control the effectiveness of our immune systems. This means that if a diverse MHC is detected when kissing another person the connection may be more memorable. This is because this match would lead to offspring with healthy immune systems. In the end, nature is really choosing if a first date will lead to a second. Understanding the kiss is multifaceted, but it all comes down to the chemistry.

Tuesday, February 1, 2011

The heart of the matter


We’ve all seen the Grinch and you know what they say, his small heart grew three sizes that day. We all know how impressive we find it that the terrible Grinch used to have a heart two sizes too small and now he has the biggest of all. That is extraordinary until you hear it from me, octopuses have not one heart, not two, but three!!!

Okay now that I’m done with my poor attempt of trying to rhyme and be clever, let me explain to you what caused me to come across this information. The other day when reading Don't be Such a Scientist by Randy Olson, he told a story about an octopus using its beak to maul a diver who was trying to get a picture with the massive creature. It explained that the diver only got away after he finally relaxed because when he struggled with the octopus, its grip only got stronger and its bite harder. I found this interesting so I went searching for more information.

The biggest octopus is the giant Pacific octopus which is a whopping 110 pounds and can be up to 16ft in length. Although these creatures are huge, they are by no means dopey and stupid. Studies have shown that they can distinguish between shapes and patterns and have short- and long-term memory! They also have the ability to lose an arm in order to trick a predator and it will grow back in 6-8 weeks. Now on to its three hearts; one main heart is used to pump blood to the entire body while two are used to pump blood through the gills where waste is dumped and oxygen-rich blood is then pumped back to the main heart. Also, the blood of an octopus contains hemocyanin instead of hemoglobin so the blood is blue!

For more information, you can go to this link from Moment of Science and to the Animal Planet octopus page.



I tried to use the arouse and fulfill technique by adding the introduction about the Grinch to make people wonder what the heck this science blog was talking about. I am not very good at the "show me, don't tell me" and often find myself blurting out fact after fact, which I did the same here L But I tried to incorporate a video which may help to offset my ramblings. I also tried to use active voice when writing the blog. I need to work on transitioning from paragraph to paragraph and sentence to sentence.