Cyanobacteria. These are the tiny toxic man killers I am talking about.
Friday, April 29, 2011
Tiny Toxic Man Killers
Cyanobacteria. These are the tiny toxic man killers I am talking about.
Thursday, April 28, 2011
Angiosperms
Sunday, April 24, 2011
Angiosperms?
So why are angiosperms and their life cycle important? Angiosperms make up 90% of living plant species. The two major characteristics of an angiosperm are the flower and the fruit, which play a critical role in the life cycle of the plant. The flower is necessary for sexual reproduction. The angiosperms rely on pollinators, such as insects, to transfer the pollen from flower to flower. The organs within the flower are the sepals, petals, stamens, and carpels. The bright color of the flower petals are an adaption necessary for attracting pollinators. The fruit is used to protect the seeds and help in dispersing the mature seeds. Some angiosperm fruits are not conventionally recognized as a fruit. In maples and dandelions, the fruits have adapted with propellers or parachutes to enhance the movement of the seeds by wind dispersion.
The angiosperm life cycle appears complex and has many characteristic attributes. The haploid part of the cycle begins with the production of the male and female gametophytes. The male gametophyte has two haploid cells that form the tube cell and two sperm. The female gametophyte consists of an embryo sac that holds the egg. After pollution, the sperm are discharged into the ovule. The fertilization signals that transition from a haploid to a diploid stage of the cycle. Angiosperms have double fertilization, which means that one sperm from the male gametophyte fertilizes the egg and the other sperm fertilization a central cell in the ovary and forms an endosperm, which is the food supply for the seed, while it is dormant within the fruit. The seed develops into the sporophyte, which is diploid. Then the life cycle begins again. The adaptive nature of the angiosperms provides the beauty of spring and the nutrition fruits.
Tuesday, April 5, 2011
Smaller Brains in Migratory Birds
Before I was even finished taking the assessment test I realized that I knew very little about ecology and the behavior of animals in general. Yeah, I got a taste of it in the early Biology classes but I never needed to take the specialized classes of Ecology or Zoology to get where I am now. So, while looking at various sites and blogs on ecology and animal behavior, I came across a really interesting article on the differing brain sizes in migratory birds versus residential birds and I just had to read more.
There are two major questions scientists asked about the brain size of these birds: is the smaller brain a result of migration or does a smaller brain predestine a bird to migrate? Along with their colleagues, Daniel Sol and NĂºria Garcia who are CREAF researchers studied 600 passerine species with varying habitats. Within these 600 species, Sol and Garcia found that migratory birds do indeed have smaller brains than residential birds who tough out the sometimes harsh seasonal changes. They also concluded that the decreased brain size is a direct result of migration--contrary to the previously accepted 'protective brain theory'.
As earlier studies have shown, having a larger brain is more desirable than having a smaller brain due to it's large cognitive holding capacity. This theory holds true for residential birds who remain in their habitat from birth until death and who need to constantly learn how to stay alive, search for food, and fend off predators. However, with migratory birds, familiarity and knowledge of their surroundings is not as important since their stay in that area is only temporary. The cost-benefit idea is also a valid explanation of the smaller brains in these birds. The amount of energy they would spend learning the only transitory habitat could be put to better use during their travels. Sol and Garcia stated that "for these species, their innate behavior can be more useful than learned behavior".
As a follow up to their research, the researchers added that an analysis of the pallium and telencephalon in the bird brains would be beneficial to their conclusions since these areas are "involved in learning and behavior innovation processes".
Monday, April 4, 2011
B)
C)
D)
E)